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Oscillations

15-1 SIMPLE HARMONIC MOTION

Learning Objectives
After reading this module, you should be able to . . .

15.01 Distinguish simple harmonic motion from other types of
periodic motion.

15.02 For a simple harmonic oscillator, apply the relationship
between position x and time t to calculate either if given a
value for the other.

15.03 Relate period T, frequency f, and angular frequency w.

15.04 |dentify (displacement) amplitude x,,, phase constant
(or phase angle) ¢, and phase ot + ¢.

15.05 Sketch a graph of the oscillator’s position x versus time
t, identifying amplitude x,, and period 7.

15.06 From a graph of position versus time, velocity versus
time, or acceleration versus time, determine the amplitude
of the plot and the value of the phase constant ¢.

15.07 On a graph of position x versus time ¢ describe the ef-
fects of changing period T, frequency f, amplitude x,,,, or
phase constant ¢.

15.08 |dentify the phase constant ¢ that corresponds to the
starting time (¢ = 0) being set when a particle in SHM is
at an extreme point or passing through the center point.

15.09 Given an oscillator's position x(f) as a function of time,
find its velocity v(f) as a function of time, identify the veloc-
ity amplitude v,, in the result, and calculate the velocity at
any given time.

Key ldeas

@ The frequency f of periodic, or oscillatory, motion is the
number of oscillations per second. In the Sl system, it is
measured in hertz: 1 Hz = 1s7 .

@ The period T is the time required for one complete oscilla-
tion, or cycle. It is related to the frequency by 7' = 1/f.

@ In simple harmonic motion (SHM), the displacement x(¢) of a

particle from its equilibrium position is described by the equation

X = x,, cos(wt + ¢)  (displacement),

in which x,,, is the amplitude of the displacement, wt + ¢ is
the phase of the motion, and ¢ is the phase constant. The
angular frequency w is related to the period and frequency of
the motion by w = 2mw/T = 2af.

o Differentiating x(¢) leads to equations for the particle’s
SHM velocity and acceleration as functions of time:

15.10 Sketch a graph of an oscillator’s velocity v versus time ¢,
identifying the velocity amplitude v,,.

15.11 Apply the relationship between velocity amplitude v,
angular frequency o, and (displacement) amplitude x,,,.

15.12 Given an oscillator's velocity v(¢) as a function of time,
calculate its acceleration a(f) as a function of time, identify
the acceleration amplitude a,,, in the result, and calculate
the acceleration at any given time.

15.13 Sketch a graph of an oscillator’s acceleration a versus
time ¢, identifying the acceleration amplitude a,,.

15.14 |dentify that for a simple harmonic oscillator the acceler-
ation a at any instant is always given by the product of a
negative constant and the displacement x just then.

15.15 For any given instant in an oscillation, apply the relation-
ship between acceleration a, angular frequency w, and dis-
placement x.

15.16 Given data about the position x and velocity v at one
instant, determine the phase wt + ¢ and phase constant ¢.

15.17 For a spring—block oscillator, apply the relationships be-
tween spring constant k and mass m and either period T or
angular frequency w.

15.18 Apply Hooke's law to relate the force F on a simple har-
monic oscillator at any instant to the displacement x of the
oscillator at that instant.

Vv = —ax,, sin(of + ¢)  (velocity)

and a = —ax,, cos(wl + ¢)  (acceleration).

In the velocity function, the positive quantity wx,, is the veloc-
ity amplitude v,,.. In the acceleration function, the positive
quantity w’x,, is the acceleration amplitude a,,.

@ A particle with mass m that moves under the influence of a
Hooke's law restoring force given by I = —kx is a linear sim-
ple harmonic oscillator with

[ k
w = ,/—— (angular frequency)
m
T =2, l% (period).

and
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Figure 15-1 A particle repeatedly oscillates
left and right along an x axis, between
extreme points x,, and —x,,,.

What Is Physics?

Our world is filled with oscillations in which objects move back and forth repeat-
edly. Many oscillations are merely amusing or annoying, but many others are
dangerous or financially important. Here are a few examples: When a bat hits a
baseball, the bat may oscillate enough to sting the batter’s hands or even to break
apart. When wind blows past a power line, the line may oscillate (“gallop” in elec-
trical engineering terms) so severely that it rips apart, shutting off the power
supply to a community. When an airplane is in flight, the turbulence of the air
flowing past the wings makes them oscillate, eventually leading to metal fatigue
and even failure. When a train travels around a curve, its wheels oscillate horizon-
tally (“hunt” in mechanical engineering terms) as they are forced to turn in new
directions (you can hear the oscillations).

When an earthquake occurs near a city, buildings may be set oscillating so
severely that they are shaken apart. When an arrow is shot from a bow, the feathers
at the end of the arrow manage to snake around the bow staff without hitting it be-
cause the arrow oscillates. When a coin drops into a metal collection plate, the coin
oscillates with such a familiar ring that the coin’s denomination can be determined
from the sound. When a rodeo cowboy rides a bull, the cowboy oscillates wildly as
the bull jumps and turns (at least the cowboy hopes to be oscillating). N

The study and control of oscillations are two of the primary goals of both
physics and engineering. In this chapter we discuss a basic type of oscillation
called simple harmonic motion.

Heads Up. This material is quite challenging to most students. One reason is
that there is a truckload of definitions and symbols to sort out, but the main reason
is that we need to relate an object’s oscillations (something that we can see or even
experience) to the equations and graphs for the oscillations. Relating the real, visi-
ble motion to the abstraction of an equation or graph requires a lot of hard work.

Simple Harmonic Motion

Figure 15-1 shows a particle that is oscillating about the origin of an x axis, repeat-
edly going left and right by identical amounts. The frequency f of the oscillation is
the number of times per second that it completes a full oscillation (a cycle) and
has the unit of hertz (abbreviated Hz), where

1 hertz = 1 Hz = 1 oscillation per second = 1s™ . (15-1)

The time for one full cycle is the period 7 of the oscillation, which is
T=— (15-2)

Any motion that repeats at regular intervals is called periodic motion or har-
monic motion. However, here we are interested in a particular type of periodic
motion called simple harmonic motion (SHM). Such motion is a sinusoidal func-
tion of time t. That is, it can be written as a sine or a cosine of time 7. Here we
arbitrarily choose the cosine function and write the displacement (or position) of
the particle in Fig. 15-1 as

x(t) = x,, cos(wt + ¢) (displacement), (15-3)

in which x,,, w, and ¢ are quantities that we shall define.

Freeze-Frames. Let’s take some freeze-frames of the motion and then arrange
them one after another down the page (Fig. 15-2a). Our first freeze-frame is at ¢ = 0
when the particle is at its rightmost position on the x axis. We label that coordi-
nate as x,, (the subscript means maximum); it is the symbol in front of the cosine
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Figure 15-2 (a) A sequence of “freeze-frames” (taken at equal time intervals) showing the position of a par-
ticle as it oscillates back and forth about the origin of an x axis, between the limits +x,, and —x,,,. (b) The
vector arrows are scaled to indicate the speed of the particle. The speed is maximum when the particle is at
the origin and zero when it is at *x,,. If the time ¢is chosen to be zero when the particle is at +x,,, then the
particle returns to +x,, att = T, where T'is the period of the motion. The motion is then repeated. (c)
Rotating the figure reveals the motion forms a cosine function of time, as shown in (d). (¢) The speed (the
slope) changes.
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Figure 15-3 A handy guide to the quantities
in Eq. 15-3 for simple harmonic motion.
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Figure 15-4 Values of ¢ corresponding to
the position of the particle at time ¢ = 0.

function in Eq. 15-3. In the next freeze-frame, the particle is a bit to the left of x,,,.
It continues to move in the negative direction of x until it reaches the leftmost po-
sition, at coordinate —x,,. Thereafter, as time takes us down the page through
more freeze-frames, the particle moves back to x,, and thereafter repeatedly os-
cillates between x,, and —x,,. In Eq. 15-3, the cosine function itself oscillates be-
tween +1 and —1. The value of x,, determines how far the particle moves in its os-
cillations and is called the amplitude of the oscillations (as labeled in the handy
guide of Fig. 15-3).

Figure 15-2b indicates the velocity of the particle with respect to time, in the se-
ries of freeze-frames. We'll get to a function for the velocity soon, but for now just
notice that the particle comes to a momentary stop at the extreme points and has
its greatest speed (longest velocity vector) as it passes through the center point.

Mentally rotate Fig. 15-2a counterclockwise by 90°, so that the freeze-frames
then progress rightward with time. We set time ¢t = 0 when the particle is at x,,.
The particle is back at x,, at time r = T (the period of the oscillation), when it
starts the next cycle of oscillation. If we filled in lots of the intermediate freeze-
frames and drew a line through the particle positions, we would have the cosine
curve shown in Fig. 15-2d. What we already noted about the speed is displayed in
Fig. 15-2e. What we have in the whole of Fig. 15-2 is a transformation of what we
can see (the reality of an oscillating particle) into the abstraction of a graph. (In
WileyPLUS the transformation of Fig. 15-2 is available as an animation with
voiceover.) Equation 15-3 is a concise way to capture the motion in the abstrac-
tion of an equation.

More Quantities. The handy guide of Fig. 15-3 defines more quantities
about the motion. The argument of the cosine function is called the phase of the
motion. As it varies with time, the value of the cosine function varies. The con-
stant ¢ is called the phase angle or phase constant. It is in the argument only be-
cause we want to use Eq. 15-3 to describe the motion regardless of where the par-
ticle is in its oscillation when we happen to set the clock time to 0. In Fig. 15-2, we set
t = 0 when the particle is at x,,. For that choice, Eq. 15-3 works just fine if we also
set ¢ = 0. However, if we set ¢ = 0 when the particle happens to be at some other
location, we need a different value of ¢. A few values are indicated in Fig. 15-4.
For example, suppose the particle is at its leftmost position when we happen to
start the clock att = 0. Then Eq. 15-3 describes the motion if ¢ = w7 rad. To check,
substitute = 0 and ¢ = wrrad into Eq. 15-3. See, it gives x = —x,, just then. Now
check the other examples in Fig. 15-4.

The quantity win Eq. 15-3 is the angular frequency of the motion. To relate it
to the frequency f and the period T, let’s first note that the position x(¢) of the
particle must (by definition) return to its initial value at the end of a period. That
is, if x(¢) is the position at some chosen time ¢, then the particle must return to that
same position at time ¢t + 7. Let’s use Eq. 15-3 to express this condition, but let’s
also just set ¢ = 0 to get it out of the way. Returning to the same position can
then be written as

X,, COs wt = x,, cos w(t + T). (15-4)

The cosine function first repeats itself when its argument (the phase, remember)
has increased by 27 rad. So, Eq. 15-4 tells us that

ot +T)=wt+2m
or oT = 2.
Thus, from Eq. 15-2 the angular frequency is

=" =2af (15-5)

The SI unit of angular frequency is the radian per second.
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We’ve had a lot of quantities here, quantities that we could experimentally
change to see the effects on the particle’s SHM. Figure 15-5 gives some examples.
The curves in Fig. 15-5a show the effect of changing the amplitude. Both curves
have the same period. (See how the “peaks” line up?) And both are for ¢ = 0. (See
how the maxima of the curves both occur at ¢+ = 0?) In Fig. 15-5b, the two curves
have the same amplitude x,, but one has twice the period as the other (and thus half
the frequency as the other). Figure 15-5c¢ is probably more difficult to understand.
The curves have the same amplitude and same period but one is shifted relative to
the other because of the different ¢ values. See how the one with ¢ = Ois just a reg-
ular cosine curve? The one with the negative ¢ is shifted rightward from it. That is a
general result: negative ¢ values shift the regular cosine curve rightward and posi-
tive ¢ values shift it leftward. (Try this on a graphing calculator.)

z Checkpoint 1

A particle undergoing simple harmonic oscillation of period 7' (like that in Fig. 15-2) is
at —x,, at time t = 0.Is it at —x,,, at +x,,,at 0, between —x,, and 0, or between 0 and
+x,, when (a) t = 2.007, (b) t = 3.507, and (c) t = 5.257?

The Velocity of SHM

We briefly discussed velocity as shown in Fig. 15-2b, finding that it varies in magni-
tude and direction as the particle moves between the extreme points (where the
speed is momentarily zero) and through the central point (where the speed is maxi-
mum). To find the velocity v(f) as a function of time, let’s take a time derivative of
the position function x(¢) in Eq. 15-3:

W(f) = d’;(tt) - %[xm cos(wt + B)]
or v(f) = —wx,, sin(wt + @)  (velocity). (15-6)

The velocity depends on time because the sine function varies with time,
between the values of +1 and —1. The quantities in front of the sine function
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Figure 15-6 (@) The displacement x(¢) of a

particle oscillating in SHM with phase

angle ¢ equal to zero. The period 7 marks
one complete oscillation. (b) The velocity
v(?) of the particle. (c) The acceleration

a(r) of the particle.

determine the extent of the variation in the velocity, between +wx,, and — wx,,.
We say that wx,, is the velocity amplitude v,, of the velocity variation. When the
particle is moving rightward through x = 0, its velocity is positive and the magni-
tude is at this greatest value. When it is moving leftward through x = 0, its veloc-
ity is negative and the magnitude is again at this greatest value. This variation
with time (a negative sine function) is displayed in the graph of Fig. 15-6b for a
phase constant of ¢ = 0, which corresponds to the cosine function for the dis-
placement versus time shown in Fig. 15-6a.

Recall that we use a cosine function for x(¢) regardless of the particle’s posi-
tion at r = (0. We simply choose an appropriate value of ¢ so that Eq. 15-3 gives us
the correct position at ¢ = 0. That decision about the cosine function leads us to a
negative sine function for the velocity in Eq. 15-6, and the value of ¢ now gives
the correct velocity at £ = 0.

The Acceleration of SHM

Let’s go one more step by differentiating the velocity function of Eq. 15-6 with
respect to time to get the acceleration function of the particle in simple harmonic
motion:

_dv _d .
a(t) = @ [—wx,, sin(wt + ¢)]
or a(t) = —w*x,, cos(wt + @)  (acceleration). (15-7)

We are back to a cosine function but with a minus sign out front. We know the
drill by now. The acceleration varies because the cosine function varies with time,
between +1 and —1. The variation in the magnitude of the acceleration is set by
the acceleration amplitude a,,, which is the product «?x,, that multiplies the co-
sine function.

Figure 15-6¢ displays Eq. 15-7 for a phase constant ¢ = 0, consistent with
Figs. 15-6a and 15-6b. Note that the acceleration magnitude is zero when the
cosine is zero, which is when the particle is at x = 0. And the acceleration mag-
nitude is maximum when the cosine magnitude is maximum, which is when the
particle is at an extreme point, where it has been slowed to a stop so that its
motion can be reversed. Indeed, comparing Eqgs. 15-3 and 15-7 we see an extremely
neat relationship:

at) = — (1) (15-8)

This is the hallmark of SHM: (1) The particle’s acceleration is always oppo-
site its displacement (hence the minus sign) and (2) the two quantities are al-
ways related by a constant (w?). If you ever see such a relationship in an oscil-
lating situation (such as with, say, the current in an electrical circuit, or the
rise and fall of water in a tidal bay), you can immediately say that the motion
is SHM and immediately identify the angular frequency w of the motion. In a
nutshell:

AN
"' In SHM, the acceleration a is proportional to the displacement x but opposite in
sign, and the two quantities are related by the square of the angular frequency w.

7[ Checkpoint 2

Which of the following relationships between a particle’s acceleration a and its
position x indicates simple harmonic oscillation: (a) a = 3x?, (b) a = 5x, (c) a = —4x,
(d) a = —2/x? For the SHM, what is the angular frequency (assume the unit of rad/s)?
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The Force Law for Simple Harmonic Motion

Now that we have an expression for the acceleration in terms of the displacement
in Eq. 15-8, we can apply Newton’s second law to describe the force responsible
for SHM:

F = ma = m(—w*) = —(mao?)x. (15-9)

The minus sign means that the direction of the force on the particle is opposite the di-
rection of the displacement of the particle. That is,in SHM the force is a restoring force
in the sense that it fights against the displacement, attempting to restore the particle to
the center point at x = 0. We’ve seen the general form of Eq. 15-9 back in Chapter 8
when we discussed a block on a spring as in Fig. 15-7. There we wrote Hooke’s law,

F=—kx, (15-10)

for the force acting on the block. Comparing Egs. 15-9 and 15-10, we can now re-
late the spring constant k (a measure of the stiffness of the spring) to the mass of
the block and the resulting angular frequency of the SHM:

k =ma’. (15-11)
Equation 15-10 is another way to write the hallmark equation for SHM.

AN

"' Simple harmonic motion is the motion of a particle when the force acting on it is
proportional to the particle’s displacement but in the opposite direction.

The block—spring system of Fig. 15-7 is called a linear simple harmonic oscillator
(linear oscillator, for short), where /inear indicates that F is proportional to x to
the first power (and not to some other power).

If you ever see a situation in which the force in an oscillation is always pro-
portional to the displacement but in the opposite direction, you can immediately
say that the oscillation is SHM. You can also immediately identify the associated
spring constant k. If you know the oscillating mass, you can then determine the
angular frequency of the motion by rewriting Eq. 15-11 as

| k
w = ? (angular frequency). (15-12)

(This is usually more important than the value of k.) Further, you can determine
the period of the motion by combining Eqs. 15-5 and 15-12 to write

T =2, /% (period). (15-13)

Let’s make a bit of physical sense of Egs. 15-12 and 15-13. Can you see that a
stiff spring (large k) tends to produce a large w (rapid oscillations) and thus a
small period 7? Can you also see that a large mass m tends to result in a small @
(sluggish oscillations) and thus a large period 7'?

Every oscillating system, be it a diving board or a violin string, has some
element of “springiness” and some element of “inertia” or mass. In Fig. 15-7, these
elements are separated: The springiness is entirely in the spring, which we assume
to be massless, and the inertia is entirely in the block, which we assume to be rigid.
In a violin string, however, the two elements are both within the string.

IZ Checkpoint 3

Which of the following relationships between the force F on a particle and the parti-
cle’s position x gives SHM: (a) F = —5x, (b) F = —400x%, (c) F = 10x, (d) F = 3x*?

! \ L
I ! I

—X,, x=0 +X,,

Figure 15-7 A linear simple harmonic oscil-
lator. The surface is frictionless. Like the
particle of Fig. 15-2, the block moves in
simple harmonic motion once it has been
either pulled or pushed away from the

x = 0 position and released. Its displace-
ment is then given by Eq. 15-3.
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Sample Problem 15.01

A block whose mass m is 680 g is fastened to a spring whose
spring constant k is 65 N/m. The block is pulled a distance
x =11 cm from its equilibrium position at x = 0 on a fric-
tionless surface and released from rest at ¢ = 0.

(a) What are the angular frequency, the frequency, and the
period of the resulting motion?

KEY IDEA

The block—spring system forms a linear simple harmonic
oscillator, with the block undergoing SHM.

Calculations: The angular frequency is given by Eq. 15-12:

k [ 65 N/m
w = ; = Wkg = 9.78 rad/s

~ 9.8 rad/s. (Answer)
The frequency follows from Eq. 15-5, which yields
® 9.78 rad/s
f= 7~ omrad 1.56 Hz =~ 1.6 Hz. (Answer)
The period follows from Eq. 15-2, which yields
1 1
T = 7 = 156tz 0.64 s = 640 ms. (Answer)

(b) What is the amplitude of the oscillation?

KEY IDEA

With no friction involved, the mechanical energy of the spring—
block system is conserved.

Reasoning: The block is released from rest 11 cm from its
equilibrium position, with zero kinetic energy and the
elastic potential energy of the system at a maximum. Thus,
the block will have zero kinetic energy whenever it is
again 11 cm from its equilibrium position, which means it
will never be farther than 11 cm from that position. Its

maximum displacement is 11 cm:
x,, = 11 cm. (Answer)

(c) What is the maximum speed v,, of the oscillating block,
and where is the block when it has this speed?

KEY IDEA

The maximum speed v, is the velocity amplitude wx,, in Eq. 15-6.
Calculation: Thus, we have

V= @x, = (9.78 rad/s)(0.11 m)

= 1.1 m/s. (Answer)

Block-spring SHM, amplitude, acceleration, phase constant

This maximum speed occurs when the oscillating block is
rushing through the origin; compare Figs. 15-6a and 15-6b,
where you can see that the speed is a maximum whenever
x=0.

(d) What is the magnitude a,, of the maximum acceleration
of the block?

KEY IDEA

The magnitude a,, of the maximum acceleration is the accel-
eration amplitude w?x,, in Eq. 15-7.

Calculation: So,we have
a,, = w’x,, = (9.78 rad/s)*(0.11 m)

=11 m/s%. (Answer)

This maximum acceleration occurs when the block is at the
ends of its path, where the block has been slowed to a stop
so that its motion can be reversed. At those extreme
points, the force acting on the block has its maximum mag-
nitude; compare Figs. 15-6a and 15-6¢, where you can see
that the magnitudes of the displacement and acceleration
are maximum at the same times, when the speed is zero, as
you can see in Fig. 15-6b.

(e) What is the phase constant ¢ for the motion?

Calculations: Equation 15-3 gives the displacement of the
block as a function of time. We know that at time 7 = 0,
the block is located at x = x,,. Substituting these initial
conditions, as they are called, into Eq. 15-3 and canceling x,,
give us

1 = cos ¢. (15-14)
Taking the inverse cosine then yields
¢ = Orad. (Answer)

(Any angle that is an integer multiple of 277 rad also satisfies
Eq. 15-14; we chose the smallest angle.)

(f) What is the displacement function x(f) for the
spring—block system?

Calculation: The function x(¢) is given in general form by
Eq. 15-3. Substituting known quantities into that equation
gives us

x(f) = x,, cos(wt + ¢)
= (0.11 m) cos[(9.8 rad/s)t + 0]

= 0.11 cos(9.8¢), (Answer)

where x is in meters and ¢ is in seconds.

PLUS Additional examples, video, and practice available at WileyPLUS
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Sample Problem 15.02 Finding SHM phase constant from displacement and velocity

At t = 0, the displacement x(0) of the block in a linear oscil-
lator like that of Fig. 15-7 is —8.50 cm. (Read x(0) as “x at
time zero.”) The block’s velocity v(0) then is —0.920 m/s,
and its acceleration a(0) is +47.0 m/s%.

(a) What is the angular frequency o of this system?

KEY IDEA

With the block in SHM, Egs. 15-3, 15-6, and 15-7 give its dis-
placement, velocity, and acceleration, respectively, and each
contains .

Calculations: Let’s substitute =0 into each to see
whether we can solve any one of them for w. We find

x(0) = x,,, cos ¢, (15-15)
v(0) = —x,, sin ¢, (15-16)
and a(0) = —a’x,, cos ¢. (15-17)

In Eq. 15-15, o has disappeared. In Egs. 15-16 and 15-17, we
know values for the left sides, but we do not know x,, and ¢.
However, if we divide Eq. 15-17 by Eq. 15-15, we neatly elim-
inate both x,, and ¢ and can then solve for w as

a(0) 47.0 m/s?
“- \/_ x(0) \/_ —0.0850 m
=23.5 rad/s.
(b) What are the phase constant ¢ and amplitude x,,?

e
PLU

(Answer)

Calculations: We know w and want ¢ and x,,,. If we divide
Eq. 15-16 by Eq. 15-15, we eliminate one of those unknowns
and reduce the other to a single trig function:

v(0) —ox,sing

x(0)  x,cosp —wtan ¢
Solving for tan ¢, we find
v(0) —0.920 m/s
t = — = =
an ¢ == 0 (23.5 rad/s)(—0.0850 m)
= —0.461.

This equation has two solutions:
¢=-25 and ¢ =180°+ (—25°) = 155°.

Normally only the first solution here is displayed by a calcu-
lator, but it may not be the physically possible solution. To
choose the proper solution, we test them both by using them
to compute values for the amplitude x,,. From Eq. 15-15, we
find that if ¢ = —25° then

x(0)  —0.0850m
DS cos ¢ cos(—25°)

= —0.094 m.

We find similarly that if ¢ = 155°, then x,, = 0.094 m.
Because the amplitude of SHM must be a positive constant,
the correct phase constant and amplitude here are

¢ =155 and x,=0.094m=94cm. (Answer)

Additional examples, video, and practice available at WileyPLUS

15-2 ENERGY IN SIMPLE HARMONIC MOTION

Learning Objectives

After reading this module, you should be able to . . .

15.19 For a spring—block oscillator, calculate the kinetic energy
and elastic potential energy at any given time.

15.20 Apply the conservation of energy to relate the total en-
ergy of a spring—block oscillator at one instant to the total
energy at another instant.

Key ldeas

® A particle in simple harmonic motion has, at any time, ki-
netic energy K = 1mv? and potential energy U = kx If no

Energy in Simple Harmonic Motion

15.21 Sketch a graph of the kinetic energy, potential energy,
and total energy of a spring—block oscillator, first as a func-
tion of time and then as a function of the oscillator's position.

15.22 For a spring—block oscillator, determine the block’s po-
sition when the total energy is entirely kinetic energy and
when it is entirely potential energy.

friction is present, the mechanical energy £ = K + U
remains constant even though K and U change.

Let’s now examine the linear oscillator of Chapter 8, where we saw that the energy
transfers back and forth between kinetic energy and potential energy, while the sum
of the two—the mechanical energy E of the oscillator—remains constant. The
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Figure 15-8 (&) Potential energy U(t), kinet-
ic energy K(f), and mechanical energy E
as functions of time ¢ for a linear harmon-
ic oscillator. Note that all energies are
positive and that the potential energy and
the kinetic energy peak twice during
every period. (b) Potential energy U(x),
kinetic energy K(x), and mechanical energy
E as functions of position x for a linear
harmonic oscillator with amplitude x,,,.

For x = 0 the energy is all kinetic, and for
x = *x,, it is all potential.

CHAPTER 15 OSCILLATIONS

potential energy of a linear oscillator like that of Fig. 15-7 is associated entirely
with the spring. Its value depends on how much the spring is stretched or com-
pressed —that is, on x(¢). We can use Egs. 8-11 and 15-3 to find
U(t) = L kx? = Jka2, cos?(wt + ¢). (15-18)

Caution: A function written in the form cos? A (as here) means (cos A)? and is not
the same as one written cos A% which means cos(A?).

The kinetic energy of the system of Fig. 15-7 is associated entirely with the
block. Its value depends on how fast the block is moving—that is, on v(¢). We can
use Eq. 15-6 to find

K(t) = 1mv? = I, sin?(ot + ¢). (15-19)

If we use Eq. 15-12 to substitute k/m for «?, we can write Eq.15-19 as

K(t) = 3mv? = 1kx2, sin’(wt + ¢). (15-20)

The mechanical energy follows from Eqs. 15-18 and 15-20 and is

E=U+K
1kx2, cos™(wt + @) + ka2, sin®(wt + ¢)

1kx2, [cosX(wt + ¢) + sinX(wt + @)].

For any angle «,
cos’? a + sina = 1.

Thus, the quantity in the square brackets above is unity and we have

E=U+K =1kx2. (15-21)
The mechanical energy of a linear oscillator is indeed constant and independent of
time. The potential energy and kinetic energy of a linear oscillator are shown as
functions of time ¢ in Fig. 15-8a and as functions of displacement x in Fig. 15-8b. In
any oscillating system, an element of springiness is needed to store the potential en-
ergy and an element of inertia is needed to store the kinetic energy.

M Checkpoint 4

In Fig. 15-7, the block has a kinetic energy of 3 J and the spring has an elastic potential
energy of 2 J when the block is at x = +2.0 cm. (a) What is the kinetic energy when
the block is at x = 0? What is the elastic potential energy when the block is at (b)
x=—2.0cmand (¢c)x = —x,,?

Sample Problem 15.03 SHM potential energy, kinetic energy, mass dampers

Many tall buildings have mass dampers, which are anti-sway
devices to prevent them from oscillating in a wind. The de-
vice might be a block oscillating at the end of a spring and
on a lubricated track. If the building sways, say, eastward,
the block also moves eastward but delayed enough so that
when it finally moves, the building is then moving back
westward. Thus, the motion of the oscillator is out of step
with the motion of the building.

Suppose the block has mass m = 2.72 X 10° kg and is de-
signed to oscillate at frequency f=10.0 Hz and with ampli-
tude x,,, = 20.0 cm. =NE

(a) What is the total mechanical energy E of the spring—
block system?

KEY IDEA

The mechanical energy E (the sum of the kinetic energy
K = Imv? of the block and the potential energy U = kx? of
the spring) is constant throughout the motion of the oscillator.
Thus, we can evaluate E at any point during the motion.

Calculations: Because we are given amplitude x,, of the os-
cillations, let’s evaluate £ when the block is at position x = x,,,,
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where it has velocity v = 0. However, to evaluate U at that
point, we first need to find the spring constant k. From
Eq.15-12 (w = V k/m) and Eq.15-5 (0 = 27f), we find

k = m«? = mQaf)?
(2.72 X 10° kg)(27)*(10.0 Hz)?
= 1.073 X 10° N/m.

We can now evaluate E as

423

(b) What is the block’s speed as it passes through the equi-
librium point?

Calculations: We want the speed at x =0, where the
potential energy is U = 1kx?> = 0 and the mechanical energy
is entirely kinetic energy. So, we can write

E=K+U=m?*+ 3kx?
2.147 X 107 J = (2.72 X 10° kg)v? + 0,

E=K+ U=1Im?+ ikx? or v=12.6m/s. (Answer)
=0 + 5(1.073 X 10° N/m)(0.20 m)? Because E is entirely kinetic energy, this is the maximum
=2.147 X 107J = 2.1 x 107 J. (Answer)  speedv,,.

WILEY

PLUS Additional examples, video, and practice available at WileyPLUS

15-3 AN ANGULAR SIMPLE HARMONIC OSCILLATOR

Learning Objectives
After reading this module, you should be able to . ..

15.23 Describe the motion of an angular simple harmonic
oscillator.

15.24 For an angular simple harmonic oscillator, apply the re-
lationship between the torque 7and the angular displace-
ment 0 (from equilibrium).

15.25 For an angular simple harmonic oscillator, apply the re-
lationship between the period T (or frequency f), the rota-
tional inertia I, and the torsion constant «.

15.26 For an angular simple harmonic oscillator at any instant,
apply the relationship between the angular acceleration «, the
angular frequency w, and the angular displacement 6.

Key Ildea

@ A torsion pendulum consists of an object suspended on a wire. When the wire is twisted and then released, the object oscil-

lates in angular simple harmonic motion with a period given by

T =2 i,
\

where [ is the rotational inertia of the object about the axis of rotation and « is the torsion constant of the wire.

LJ Fixed end

Suspension wire

An Angular Simple Harmonic Oscillator

Figure 15-9 shows an angular version of a simple harmonic oscillator; the element
of springiness or elasticity is associated with the twisting of a suspension wire
rather than the extension and compression of a spring as we previously had. The
device is called a torsion pendulum, with torsion referring to the twisting.

If we rotate the disk in Fig. 15-9 by some angular displacement 6 from its rest
position (where the reference line is at = 0) and release it, it will oscillate about
that position in angular simple harmonic motion. Rotating the disk through an
angle #in either direction introduces a restoring torque given by

Reference line

T= —«Kb6. (15-22)
Figure 15-9 A torsion pendulum is an angular
version of a linear simple harmonic oscilla-
tor. The disk oscillates in a horizontal plane;
the reference line oscillates with angular
amplitude 6,,. The twist in the suspension
wire stores potential energy as a spring does
and provides the restoring torque.

Here « (Greek kappa) is a constant, called the torsion constant, that depends on
the length, diameter, and material of the suspension wire.

Comparison of Eq. 15-22 with Eq. 15-10 leads us to suspect that Eq. 15-22 is
the angular form of Hooke’s law, and that we can transform Eq. 15-13, which
gives the period of linear SHM, into an equation for the period of angular SHM:
We replace the spring constant k in Eq. 15-13 with its equivalent, the constant



